Advancing Net Zero

Feasible?

-

If we decided to go for it , others cannot say
" No"

Then Why ??

2 High density cities are model for future cities

Hong Kong can be a good reference for others

Transition Curve™

We Know the urgency & We Know the challenges

Advancing Net Zero (ANZ) – what's in it

Reduce carbon intensity of buildings

Reduce consumption

- Behavior change
- **Operational practices**
- Passive means

Enhance efficiency

- Replacement
- Retro-fitting
- Retro-commissioning

Decarbonize electricity supply

- Renewables
- **PV**
- Solar

Sup

A lot of buildings have reduced by 20-50% with proven technologies and we have 30 more years to go ...

Opportunities

Technology advancements

- PV
- HVAC equipment
- Façade
- Carbon capture and storage

Innovative retro-fitting (MEP)

- Radiant cooling
- Valve less chilled water system
- De-centralize systems

Innovative retro-fitting (Bldg.)

Facade

....

External shading
Policies and regulations
Behavior change

Decarbonize electricity supply CLP targeted for 80% reduction

Tightening CLP's clean energy and decarbonisation targets over time

Decarbonisation Targets In terms of carbon intensity

CO2

Settle for "Feasible" or going for "better"

Carbon Offset Renewable energy / **Alternative** fuel Increase efficiency Increasing Reduce **Priority Consumption**

70% difference !!

With today's practices and technologies

<image><image>

ASIA PACIFIC REGIONAL O ADVANCING O WORLD GREEN COUNCIL

Building Services Products

Energy Efficiency ↑ with generations

But Cost ↓ with generations

Average lighting efficacy (light output per unit of energy consumed) and cost per bulb lumens/watt dollars

Air Conditioning

implication of development in Variable Speed Drive

2012 June 2015 Solar Frontier 17.8% efficiency 18.2% efficiency 1992 University of South Florida fabricates a 15.89% efficient thin-film cell 14% efficiency in PV cells

Office Equipment

- Computer Monitor
- Printer

Power Consumption Comparison Between LED, LCD, CRT & Plasma:

Screen Size	LED	LCD	CRT	Plasma
15 inches	15	18	65	
17 inches	18	20	75	
19 inches	20	22	80	
20 inches	24	26	90	
21 inches	26	30	100	
22 inches	30	40	110	
24 inches	40	50	120	
30 inches	50	60		150
32 inches	55	70		160
37 inches	60	80		180
42 inches	80	120		220
50 inches	100	150		300

* Results may vary significantly, results assume displays are calibrated for energy saving performance.

ASIA PACIFIC REGIONAL O ADVANCING O WORLD GREEN BULDING

Office Equipment

Printer - Energy Saving Performance (Fuji Xerox)

devices

multifunction devices

Fuji Xerox: Zero Carbon in Hong Kong's Operation

Visible Green Initiatives 看得見的環保

Driving to fulfill our "Zero Landfill" commitment, Fuji Xerox (Hong Kong) commits to be a "Good Company" in the community of Hong Kong. For every compliment we received, we will purchase carbon offset" of no less than 80 kg in support of a wind or solar farm project for promoting renewable energy. This will help to create a Greener living planet and sustainable environment for next generation.

富士施樂(香港)有限公司致力成為香港的優秀企業並推 動及履行「零堆填」承諾。我們將為每一個讀揚購買有 開風電或太陽能光伏頂目不少於80公斤的碳抵消數額*, 以協助推廣可再生電力,為下一代創造更美好的環鏡和 可持續發展的末來。

 For the total carbon offset and purchase amount, please refer to FujiXerax (Hong Kong) Sustainability Report, 有關被話消數期及購買金額,讀參問證士認具(香港) 互時質發展報告。 HK\$20 by cheque or cash. In return, we will present an acknowledgement certificate and a souvenir for you. 数如以交票或現金捐赠活幣 20元参與書土筋樂 (香港) 「看考見的意味引動」・我們將會送上確認證書及紀念 品以示謝意。

ASIA PACIFIC REGIONAL O ADVANCING O WORLD GREEN BUILDING

Data Centre

PUE	DCiE	Level of Efficieny	
3.0	33%	Very Inefficient	
2.5	40%	Inefficient	
2.0	50%	Average	
1.5	67%	Efficient	
1.2	83%	Very Efficient	

Office of the Government Chief Information Officer

GREEN DATA CENTRE PRACTICES

Version : 3.0

July 2016 © The Government of the Hong Kong Special Administrative Region

The contents of this document remain the property of, and may not be reproduced in whole or in part without the express permission of the Government of the HKSAR

Immersion is the Next Generation

The evolution of data center cooling leads to immersion

1970s-2000 2005-2007 2009-2012 2015-Present 200 System: Cooling Capacity (kw/rack) Immersion 180 160 140 120 100 **CPU: Cold Plate** 80 Rack: RDHx 60 Row: In-Row 40 20 Room: CRAC/CRAHs 0 1.5 1.4 1.3 1.1 1.7 1.6 1.2 1 **Energy Efficiency: PUE**

Power usage effectiveness (PUE) is a ratio that describes how efficiently a computer data center uses energy; specifically, how much energy is used by the computing equipment (in contrast to cooling and other overhead)

THE WAY FORWARD

30 years to go

- 2-3 rounds of major replacement/retro-fitting/renovation
- Technological advancement
- Regulations

.....

- Behavior change
- Market drivers